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ABSTRACT 

 Cassava is an important food energy source in tropical and subtropical regions. There 

have been successful efforts to increase the β-carotene content in cassava through 

biofortification. However, the bioefficacy of the β-carotene in the biofortified cassava in 

humans has not been studied. In the present study, we investigated the bioefficacy of the β-

carotene in biofortified cassava in 9 healthy women ages 18-39 y. After eating conventional 

foods with low β-carotene and vitamin A contents for three days, the subjects were asked to 

ingest one of the three cassava porridges in random order. All of the porridge servings were 

about 200 g and contained 40 g cassava flour. The three porridges included biofortified 

cassava porridge (1097.5 µg β-carotene), white cassava porridge with vitamin A reference 

dose (285.6 µg retinol) and white cassava porridge with β-carotene reference dose (537.6 µg 

β-carotene). Blood samples were collected prior to ingestion of the test porridge and at 2, 3.5, 

5, 6.5, 9 hours after ingestion. Plasma triacylglycerol rich lipoproteins (chylomicrons and 

large VLDL) were isolated and the retinyl palmitate contents were analyzed by HPLC-ECD.  

The mean amounts of retinyl palmitate appearing in the triacylglycerol-rich lipoprotein 

fraction in the entire plasma pool after ingestion of the biofortified cassava porridge and the 

white cassava porridge with the β-carotene reference dose were 1587.53 ± 285.27 and 914.35 

± 128.50 nmol. The vitamin A equivalence values of the β-carotene in these two porridges 

were 2.80 ± 1.77 to 1 and 2.11 ± 0.81 to 1 (by weight), respectively. These vitamin A 

equivalence values were not significantly different by t test. In our study population, the 

bioefficacy of the β-carotene in biofortified cassava was as good as that of a β-carotene 

supplement. 
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

Vitamin A deficiency is a common public health problem in developing countries due 

to diets deficient in vitamin A. Preschool children and pregnant women are most vulnerable 

to vitamin A deficiency (World Health Organization 1995). It is estimated that vitamin A 

deficiency affects 75 to 252 million preschool children each year (Maziya-Dixon et al 2006). 

Vitamin A deficiency may result in blindness, night blindness, decreased immunity, and 

increased morbidity and mortality (Sommer et al 2008). To combat vitamin A malnutrition in 

developing countries, efforts have focused upon providing vitamin A supplements for 

children and pregnant women and vitamin A fortification. There is strong evidence that 

vitamin A supplementation programs have reduced mortality among infants and pregnant 

women (West et al 2003). However, impoverished populations heavily rely on plant sources 

of provitamin A carotenoids to meet their vitamin A requirements (West et al 2003). 

Biofortification is the process to develop staple crops containing high micronutrient contents 

using conventional plant breeding technology and/or modern biotechnology (Nestel et al 

2006). Through biofortification, crops will be loaded with high levels of minerals and 

vitamins in their seeds and roots, which will provide multiple benefits. Staple crops are the 

predominant food source for many low-income families in developing countries. The strategy 

of biofortification of regularly consumed staples crops targets every family member in 

micronutrient-deficient populations (Nestel et al 2006). Biofortification is a cost-effective 

and sustainable process. Once the biofortified crops are developed, they will be able to be 

grown and to produce more seeds and roots. The seeds or roots can be shared internationally 



www.manaraa.com

2 

 

to improve the nutritional status of people all over the world, even if the formal investment in 

biofortification research ends. Current biofortification research efforts include developing 

genotypes of cassava with higher provitamin A carotenoid contents in the starchy roots. 

Subsequently, the germplasm of those varieties will be shared within the developing world 

(HarvestPlus 2006). 

Cassava (Manihot esculanta) serves as a major energy source for about 500 million 

people in tropical and subtropical regions, because it grows well under marginal conditions 

of soil and climate, survives diseases and pest attack and yields more energy per hectare 

compared with other crops (Montagnac et al 2009). The provitamin A carotenoids found in 

cassava are primarily β-carotene. However, in white cassava, there may be trace amounts of 

β-carotene, which may be present in concentrations as low as 1 mg/g fresh weight or 3 mg/g 

dry weight (Iglesias et al 1997, Chavez et al 2005). 

The bioavailability of β-carotene from different plant sources varies considerably and 

is unpredictable (Reboul et al 2006). Therefore it is essential to experimentally determine the 

vitamin A equivalence of the β-carotene in biofortified cassava. We introduced a highly 

sensitive HPLC detection technique, coulometric array electrochemical detection (ECD), to 

quantify the minute vitamin A concentrations in the postprandial plasma triacylglycerol-rich 

lipoprotein fractions after subjects ingested a single realistic test meal (White et al, 2008). 

The objective of the current study is to quantify the vitamin A equivalence of the β-carotene 

in biofortified cassava based on the ingestion of a single realistic serving of cassava porridge. 
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Literature review 

Vitamin A absorption and transport 

Mechanism of vitamin A absorption and transport 

Vitamin A can be found in two major forms in both animal and plant foods, as retinyl 

ester and as provitamin A carotenoids (mostly β-carotene), respectively. Dietary retinyl esters 

are hydrolyzed into retinol by pancreatic triglyceride lipase and the intestinal brush border 

enzyme phospholipase B in the intestinal lumen prior to uptake into enterocytes. Carotenoids 

are absorbed directly by enterocytes at a lower efficiency and converted into retinol 

afterwards.  Retinol is reesterified into retinyl esters and incorporated into chylomicrons 

before being secreted into the lymph. The retinyl esters are then transported to the liver for 

further metabolism. Retinyl esters in plasma and liver are predominantly retinyl palmitate 

and retinyl stearate regardless of the composition of the fatty acids in the diet (Berr and Kern 

1984).   

The mechanism of the intestinal uptake of carotenoids has been thought to be simple 

diffusion similar to other dietary lipids. The micelle fractions have a disk-like structure, with 

an outer shell consisting of bile salts, as well as a core of more hydrophobic lipids, where 

carotenoids are incorporated. It has not been well understood how carotenoids are transported 

from the micelle core into the enterocytes. However, both in vitro and in vivo studies have 

shown that pancreatic phospholipase A2 (PLA2) is necessary for the cleavage of 

phospholipids, which is an important step in carotenoids absorption (Yonekura and Nagao 

2007).  Phosphatidylcholine (PC) suppresses lutein and β-carotene absorption in a dose-

dependent manner (Sugawara et al 2001). When micelle fractions were mixed with 
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phosphatidylcholine (PC), the absorption of the carotenoids was inhibited in rats, as shown 

by β-carotene responses in the plasma and liver (Baskaran et al 2003) and Caco-2 cells, as 

shown by micellar β-carotene and lutein levels (Sugawara et al 2001). However the 

absorption was restored by PLA2, which indicated the importance role that PLA2 plays in 

carotenoid absorption (Sugawara et al 2001, Homan et al 1998).  

The simple diffusion mechanism of absorption has been supported by studies which 

showed a linear response to increasing carotenoid concentrations in perfused rat intestines 

(Hollander and Ruble 1978) and in rat small intestinal cells (Scita et al 1992). However, 

recent studies revealed that a receptor-mediated transport also exists (Yonekura and Nagao 

2007). There is a pathway for β-carotene and lutein transport across the apical membrane of 

enterocytes, which involves the scavenger receptor class B type I (SR-BI) (Yonekura and 

Nagao 2007). Evidence supporting this theory was first found in Drosophila. In this species, 

a gene encoding an SR-BI-homologous protein was shown to be important for carotenoid 

uptake (Kiefer et al 2002). In SR-BI knockout mice, β-carotene intestinal absorption was 

significantly reduced, which indicated that β-carotene absorption was partly mediated by SR-

BI. The absorption and transport of β-carotene (During 2005) and lutein (Reboul et al 2005) 

was partly mediated by SR-BI as well in Caco-2 cells, because the anti-SR-BI antibody 

largely impaired the absorption of β-carotene. 

Bioavailability and bioconversion of carotenoids 

There are several terms to describe the efficiency of carotenoid absorption and 

utilization, including bioaccessibility, bioavailability, bioconversion, and bioefficacy. 

Bioaccessibility refers to the proportion of a carotenoid that is transferred from the food 

matrix to micelles during digestion and made accessible for intestinal absorption (Stahl 2002). 
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Bioavailability is the proportion of an ingested carotenoid that can be utilized for normal 

physiological function or storage (Castenmiller and West 1998). Bioconversion means the 

fraction of bioavailable provitamin A that can be converted into retinol (Castenmiller and 

West 1998). Bioefficacy refers to the efficiency of the process that ingested dietary 

provitamin A carotenoids are absorbed and converted to retinol (van Lieshout 2001).   

Factors that affect the bioavailability and bioconversion of carotenoids 

The bioavailability and bioconversion of carotenoids are affected by various factors 

including the type of carotenoid, the food matrix, the amount of carotenoid consumed, 

effectors of absorption and conversion, the nutritional status of the subject, and genetic 

factors (Castenmiller and West 1998).  

Previous human studies showed that the all-trans form of β-carotene was absorbed 

more easily than the 9-cis form (Ben-Amotz 1996). It was assumed that β-carotene had twice 

the vitamin A activity as other provitamin A carotenoids, including the cis isomers of  β-

carotene (FAO/WHO 1998). 

 The amount of carotenoids consumed in a meal affects both bioavailability and 

bioconversion. A study showed when a dose of β-carotene supplement was divided into three 

times and taken daily, serum β-carotene concentration was increased three times more than 

same dose taken once daily (Prince and Frisoli 1993). 

Food matrix lowers the bioavailability of β-carotene to different extents, compared 

with the bioavailability of β-carotene dissolved in oil. The serum retinol response to 

ingestion of fruit β-carotene was found to be four times the serum retinol response to 

ingestion of vegetable β-carotene (De Pee 1998). Proteins in chloroplasts as well as cell 

structures entrap the carotenoids and decrease the bioavailability of carotenoids from 
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vegetables with dark-green leaves (Castenmiller and West 1998). Cooking releases 

carotenoids from protein and cell structures, which largely increases carotenoid 

bioavailability (Erdman 1988). However, the effect of food matrix is limited to the lumen of 

the small intestine. Therefore, food matrix effects on bioconversion are mostly attributed to 

the impact on the bioavailability of carotenoids (Castenmiller and West 1998). 

The amount of dietary fat has a major impact on the absorption of carotenoids. The 

absorption of carotenoids in vegetables will be markedly improved when consumed with a 

small quantity of fat (Roels 1958). At least 5 g fat per meal was considered to be necessary 

for optimal absorption (Prince 1993, Jialal 1991, Jayarajan 1980). However, when the 

amount of consumed dietary fat is increased, the bioavailability of different types of 

carotenoids will not be affected equally (Yonekura and Nagao 2007). As β-carotene and α-

carotene are highly lipophilic carotenes, while lutein is relatively polar. Under limited oil 

conditions, the micellization of highly lipophilic carotenes will be inhibited compared with 

lutein, which transfers more freely into the lipid phases in the digesta to form micelle 

fractions. For example, in an in vitro digestion study, when spinach puree was mixed with 

2.1-3.5% fat, the micellization rate of lutein was about twice of the rate of α-carotene and β-

carotene (Garrett et al 1999, Chitchumroonchokchai et al 2004, Garrett et al 2000). When the 

fat content was increased to about 10% in spinach puree for a simulated digestion, the 

micellization of lutein and β-carotene was almost equal (Ferruzzi et al 2001).   

Dietary fiber interacts with bile acids, reduces the reabsorption of bile acids and fats, 

and affects the absorption of fat-soluble substances. A study showed that serum β-carotene 

content was decreased by 42% when pectin was added into the diet (Rock et al 1992). 
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Other factors consumed with carotenoids also affect bioavailability and bioconversion. 

Protein increases micelle formation and carotenoid absorption by stabilizing the lipids and 

facilitating the formation of a fat emulsion (Castenmiller and West 1998).  Interactions with 

drugs and some ingredients from food in the gastrointestinal tract, such as sulfides and acids, 

may decrease the bioavailability of carotenoids (Peiser et al 1979, Wedzicha et al 1983). 

The nutrient status of the host also affects the bioavailability and bioconversion of 

carotenoids. High supplementation with vitamin A decreased the absorption of both β-

carotene and canthaxanthin (Sklan et al 1989). In a study with vitamin A-replete subjects, 

after ingestion of a single 40 mg β-carotene dose, only 22% was absorbed and 18.5 µg 

dietary β-carotene was equivalent to 1µg of retinol (Novotny et al 1995). 

Genetic factors may affect β-carotene levels according to various studies. After 

adjusting for influencing factors, data showed that, among hemodialysis patients, African 

Americans had higher plasma β-carotene concentrations than white patients (Rock et al 1997). 

Another study showed Nigerian women had 1.2-13 times greater β-carotene levels and 2.5 

times greater total carotenoid levels than those of the US population (Adams-Campbell et al 

1992). The efficiency of the enzyme β-carotene 15,15' monoxygenase (BCMO1), which is 

responsible for β-carotene conversion into retinal, is also affected by its genetic 

polymorphism. Two common nonsynonymous single nucleotide polymorphisms were 

identified in the BCMO1 coding region among subjects. Carriers of both variant alleles were 

found to have a reduced ability to convert β-carotene to vitamin A (Leung 2009). 

Retinol activity equivalence 

The US Institute of Medicine established retinol activity equivalence (RAE) values in 

2001 to express vitamin A requirements. On average, consumption of 1 µg preformed 
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vitamin A equivalents yields 1 µg of bioavailable retinol. A 2 µg supplemental β-carotene 

dose yields 1 µg retinol, while β-carotene from fruits and vegetables has much lower 

bioavailability, which requires 12 µg to yield 1 µg retinol. Thus the bioavailability of β-

carotene in fruits and vegetables is considered to be on average 6 times lower than that of a 

β-carotene supplement.  Based on the molecular structure, 24 µg α-carotene or 24 µg β-

cryptoxanthin is needed for 1 µg bioavailable retinol. 

Vitamin A deficiency 

Fat-soluble vitamin A (retinol) and its derivatives (retinal and retinoic acid) are 

essential for cell differentiation, proliferation and signaling, and they play a critical role in 

vision, reproduction, and immune functions (Dowling et al 1958, Parker 1985, Sommer 

2008). 

Although vitamin A deficiency is rarely seen in developed countries, it is a common 

public health problem in developing countries due to diets poor in vitamin A. Preschool 

children and pregnant women are most vulnerable to vitamin A deficiency (Maziya-Dixon et 

al 2006). It is estimated that vitamin A deficiency affects 75 to 252 million preschool 

children each year (Maziya-Dixon 2006). Night-blindness is the first symptom of vitamin A 

deficiency in humans and other animals, which means patients need higher levels of 

illumination to see (Dowling and Wald 1960). If vitamin A deficiency gradually grows worse, 

another ocular problem called xerophthalmia or “dry eye” will develop and ultimately lead to 

blindness. By dietary intervention, this eye problem had been eliminated from developed 

countries by the early 1940s (Sommer 1995). However, worldwide, about 4.4 million 

preschool children are still having vision problems caused by vitamin A deficiency. Every 
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year, about 250,000 to 500,000 children become blind and two thirds die within months after 

that (West 2002). Moreover, vitamin A deficiency may also result in decreased immunity, 

and increased morbidity and mortality (Dowling et al 1958, Parker 1985, Sommer 2008). A 

study in Nepal showed dosing women of childbearing age with either vitamin A or β-

carotene resulted in lower mortality related to pregnancy (West et al 1999). However, 

impoverished populations heavily rely on plant sources of provitamin A carotenoids to meet 

their vitamin A requirement (West et al 2003). 

Currently two biochemical indicators are used to define vitamin A status: serum 

retinol and serum retinol-binding protein (de Pee and Dary 2002). According to the World 

Health Organization, vitamin A deficiency is defined as serum retinol concentration lower 

than 0.70 µmol/L, based on data collected from a large variety of populations (WHO/United 

Nations 1994). Compared with retinol, which needs to be detected in the laboratory with 

precise analytical instruments such as HPLC, serum RBP is easier and much cheaper to be 

assessed even in the field, and correlates well in a 1:1 molar ratio with retinol (de Pee and 

Dary 2002). However, not all RBP found in serum is bound with retinol, and their 

relationship is affected by many factors in different populations. Current proposed cut-offs 

for serum RBP vary considerably among different populations. Therefore, there is no well-

founded or reproduced cut-off for serum RBP concentration to reflect vitamin A deficiency 

in terms of a serum retinol concentration lower than 0.7 µmol/L. However, since the 

concentration ratio between serum RBP and retinol is stable, the former can serve to 

determine whether vitamin A deficiency is a public health problem, when the relationship 

between the two has been defined in a specific population (de Pee and Dary 2002). 
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Vitamin A biofortification in cassava 

The strategy of vitamin A biofortification  

To combat vitamin A malnutrition in developing countries, current efforts have 

focused on providing vitamin A supplements for children and pregnant women, processing 

fortification, and vitamin A-biofortification. 

Biofortification is the process to develop staple crops containing high micronutrient 

contents using conventional plant breeding technology and/or modern biotechnology (Nestel 

2006).  Through biofortification, crops will be loaded with high levels of minerals and 

vitamins in their seeds and roots, which will provide multiple benefits. Staple crops are the 

predominant food source for many low-income families in developing countries. The strategy 

of biofortification of regularly consumed staples crops targets every family member in 

micronutrient-deficient populations (Nestel 2006). Biofortification is a cost-effective and 

sustainable process. Once the biofortified crops are developed, they will be able to be grown 

and to produce more seeds and roots. The seeds or roots can be shared internationally to 

improve the nutritional status of people all over the world, even if the formal investment in 

biofortification research ends. Current biofortification research efforts include developing 

genotypes of cassava with higher provitamin A carotenoid contents in the starchy roots. 

Subsequently, the germplasm of those varieties will be shared within the developing world 

(HarvestPlus 2006). 

Biofortification requires multidisciplinary collaboration among scientists to 

communicate and cooperatewith innovative strategies to produce biofortified seeds and roots. 

The lead organizations in the HarvestPlus biofortification program include the Consultative 
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Group in International Agricultural Research (CGIAR) and the National Agricultural 

Research and Extension Services (NARES), which take local responsibility for  plant 

breeding, to develop varieties with both nutritional and agronomic value, for crops such as 

bean, cassava, maize, rice, sweet potato and wheat.  Food science and human nutrition 

researchers are also involved in biofortification research. They study the retention of 

nutrients after processing and cooking, the bioavailability of micronutrients, and the 

bioefficacy of the biofortified crops in human subjects. Biotechnology scientists are involved 

in biosynthetic genetics and study pathways that impact nutrient absorption (Nestel et al 

2006).  

Although micronutrients account for a small proportion of the mass of the seeds, 

whether such a small proportion will change the appearance, flavor, texture or processing 

methods needs to be investigated. It is desirable to biofortify crops to achieve high 

micronutrient content. However, it is also necessary to ensure that the fortified products will 

be adopted by farmers and consumers. Increased β-carotene content is always associated with 

yellow color in crops such as sweet potato and cassava. This might reduce the consumers’ 

preference when choosing between traditional white products and biofortified yellow 

products. But with education, the consumers can learn that yellow color often indicates 

higher β-carotene content and be persuaded to choose yellow products with more health 

benefit (Bouis 2003). 

Cassava production and consumption 

Cassava (Manihot esculanta) is a woody plant of the Euphorbiaceae (spurge) family. 

Typically, cassava has white flesh, and depending on the cyanogenic content, it can be either 

sweet or bitter. Cassava serves as a major energy source for about 500 million people in 
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tropical and sub tropical regions, because it grows well under marginal conditions of soil and 

climate, survives diseases and pest attack and yields more energy per hectare compared with 

other crops (Montagnac 2009).   

About 70 percent of the cassava production in the world comes from five countries 

including Nigeria, Thailand, Brazil, the Congo Democratic Republic and Indonesia. Based 

upon an area expansion at a rate of 1.8 percent a year, total world cassava production 

increased 2.2 percent per year since 1984, and reached 164 milliontons in 1997. However, 

the yield increased very slightly at only 0.4 percent a year (Food and Agriculture 

Organization, 2000).   

 The provitamin A carotenoid in biofortified cassava is primarily β-carotene. In white 

cassava, there may be trace amounts of β-carotene, which may be present in concentrations 

as low as 1 mg/g fresh weigh or 3 mg/g dry weigh (Iglesias et al 1997, Chavez et al 2005).  

There are several traditional cassava processing techniques according to different 

needs, including roasting, boiling, frying, sun-drying, grating, pounding, soaking and etc. 

Sweet cassava roots are often boiled and eaten either hot or cold (Lancaster 1982). 

Cooking and processing methods can affect the retention of β-carotene in cassava. 

Gari, a popular West African cassava dish processed through fermentation and gelatinization, 

has a β-carotene retention of about 32%. A 90% decrease of β-carotene content was reported 

after 20 minutes roast fermenting at 195°C. However, a lower roasting temperature at 165°C 

and a shorter time for 10 minutes resulted in 63% retention (Thakkar et al 2009). Other 

methods, including boiling, oven-drying and sun-drying all reduced β-carotene retention at 

different levels, ranging from 20 to 90 percent. As for boiled cassava, the retention is about 

90% according to an in vitro digestion study (Thakkar et al 2009). 
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Cassava cyanogen removal 

Cassava contains cyanogenic glucosides in the form of linamarin and lotaustralin, 

which give cassava a bitter flavor (Zvauya et al 2002). Linamarin and lotaustralin are broken 

down during processing into cyanohydrins and methylethyl ketone, respectively, and later 

volatilize as hydrogen cyanide (Sopade et al 2000). Inadequately processed cassava will 

cause cyanide poisoning and is linked to diseases like konzo (Casadei 1990). 

There are several treatments to reduce the cyanogen content in cassava. Sun-drying of 

peeled cassava roots is the easiest way, so that it is popular in many tropical areas. The sun-

dried roots are convenient for storage and transportation, and available for further processing 

before consumption (Essers 1996). However, high residual cyanogen levels in sun-dried 

cassava were detected, indicating ineffective cyanogen removal (Pieris et al 1974). Effective 

cyanogen removal requires two treatments. The first step is to increase linamarin-linamarase 

contact and to enhance enzyme activity, by crushing or grating the cassava into flour. The 

second treatment is to degrade the cyanohydrins and volatilize them in the form of HCN, by 

heating or drying (Essers et al 1996). A wetting/spreading method was considered as feasible 

and effective for cyanogen removal. In this method, cassava dough was prepared by mixing 

cassava flour with water. The dough was left for 5 hours at 30°C, which resulted in an 

average of 16.7% retention of hydrogen cyanide. A large flour mass might cause the 

accumulation of HCN and thus affect the pH and reduce the breakdown efficiency of 

linamarin catalysed by linamarase. However, this problem can be overcome by spreading the 

cassava dough on a tray into a layer about 0.5 cm thick (Cumbana et al 2007).  

Provitamin A biofortification of cassava 
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Current research focuses on developing genotypes of cassava with higher provitamin 

A carotenoid contents in the roots. And, subsequently, the germplasm of those varieties will 

be shared within the developing world.  Hybridization of promising cassava varieties usually 

yields a large number of seeds, and high quality hybrids are selected after large-scale seeding 

by color and agronomic performance. Carotenoids from cassava oxidize easily due to 

exposure to light, air, and physical damage, which means the postharvest losses of 

provitamin A should not be ignored (Thakkar et al 2009).  

 The bioavailability of β-carotene from different sources varies considerably (Reboul 

et al 2006). Therefore it is essential to measure the vitamin A equivalence of the β-carotene 

in β-carotene-biofortified cassava before breeding efforts continue. Several methods have 

been reported to be involved in studying the bioavailability of provitamin A carotenoids in 

food products such as cassava, including a stable-isotope reference method, in vitro digestion, 

and an animal model. In vitro digestion using Caco-2 cells showed that, in boiled cassava and 

gari, the bioaccessibility of all-trans and cis isomers of β-carotene was 25-30%, while it was 

only 12-15% in fufu (fermented and cooked cassava paste) (Thakkar et al 2009). An 

appropriate animal model is an effective and low-cost alternative to study the bioavailability 

of provitamin A carotenoids by directly measuring liver vitamin A (Howe 2009), which is 

considered the best indicator of vitamin A status (Goodman 1984). It was reported in a gerbil 

model, that biofortified cassava adequately maintained vitamin A status, as effectively as β-

carotene supplementation (Howe et al 2009). The vitamin A equivalence of spirulina β-

carotene in human subjects was studied by a stable-isotope reference method in which 

spirulina was grown in 2H2O culture solution to obtain the greatest possible [2H10] trans β-

carotene enrichment (Wang et al 2008). However, it is not feasible to use this stable tracer 
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method in cassava roots because they are grown underground. In addition, intrinsic labeling 

of crops with stable isotope tracers is expensive, time consuming, labor intensive, and 

technically demanding.  Therefore we introduced high sensitivity HPLC with coulometric 

array electrochemical detection (ECD) to detect the vitamin A concentrations in processed 

lipoprotein fractions from postprandial triacylglycerol-rich lipoprotein samples.  

Electrochemical detection (ECD) is based on the oxidation and reduction of the 

compounds in the samples. It is able to detect compounds at the femtogram level. By using 

the multichannel electrochemical detector, various micronutrients elute separately under 

different potentials after being oxidized or reduced selectively. Interfering compounds are 

removed prior to the detection of the component of interest through selective oxidation 

(Ferruzzi et al 1998). 

The objective of this study was to apply high-sensitivity coulometric array 

electrochemical detection to quantify the vitamin A equivalence of β-carotene-biofortified 

cassava in women based on the ingestion of a single realistic serving of cassava porridge.  
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CHAPTER 2. VITAMIN A EQUIVALENCE OF THE ββββ−−−−CAROTENE IN 

BIOFORTIFIED CASSAVA IN WOMEN 

Wenhong Liu1, Yang Zhou1, Hernan Ceballos2, Teresa Sanchez2, Wendy S. White1 

Abstract 

Cassava is an important food energy source in tropical and subtropical regions. There 

have been successful efforts to increase the β-carotene content in cassava through 

biofortification. However, the bioefficacy of the β-carotene in the biofortified cassava in 

humans has not been studied. In the present study, we investigated the bioefficacy of the β-

carotene in biofortified cassava in 9 healthy women ages 18-39 y. After eating conventional 

foods with low β-carotene and vitamin A contents for three days, the subjects were asked to 

ingest one of the three cassava porridges in random order. All of the porridge servings were 

about 200 g and contained 40 g cassava flour. The three porridges included biofortified 

cassava porridge (1097.5 µg β-carotene), white cassava porridge with vitamin A reference 

dose (285.6 µg retinol) and white cassava porridge with β-carotene reference dose (537.6 µg 

β-carotene). Blood samples were collected prior to ingestion of the test porridge and at 2, 3.5, 

5, 6.5, 9 hours after ingestion. Plasma triacylglycerol rich lipoproteins (chylomicrons and 

large VLDL) were isolated and the retinyl palmitate contents were analyzed by HPLC-ECD.  

The mean amounts of retinyl palmitate appearing in the triacylglycerol-rich lipoprotein 
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fraction in the entire plasma pool after ingestion of the biofortified cassava porridge and the 

white cassava porridge with the β-carotene reference dose were 1587.53 ± 285.27 and 914.35 

± 128.50 nmol. The vitamin A equivalence values of the β-carotene in these two porridges 

were 2.80 ± 1.77 to 1 and 2.11 ± 0.81 to 1 (by weight), respectively. These vitamin A 

equivalence values were not significantly different by t test. In our study population, the 

bioefficacy of the β-carotene in biofortified cassava was as good as that of a β-carotene 

supplement. 

Key words: β-carotene, bioefficacy, biofortification, cassava, vitamin A equivalence,  

Introduction 

Vitamin A deficiency is a common public health problem in developing countries due 

to diets deficient in vitamin A. Preschool children and pregnant women are most vulnerable 

to vitamin A deficiency (World Health Organization 1995). It is estimated that vitamin A 

deficiency affects 75 to 252 million preschool children each year (Maziya-Dixon et al 2006). 

Vitamin A deficiency may result in blindness, night blindness, decreased immunity, and 

increased morbidity and mortality (Sommer et al 2008). To combat vitamin A malnutrition in 

developing countries, efforts have focused upon providing vitamin A supplements for 

children and pregnant women and vitamin A fortification. There is strong evidence that 

vitamin A supplementation programs have reduced mortality among infants and pregnant 

women (West et al 2003). However, impoverished populations heavily rely on plant sources 

of provitamin A carotenoids to meet their vitamin A requirements (West et al 2003). 

Biofortification is the process to develop staple crops containing high micronutrient contents 

using conventional plant breeding technology and/or modern biotechnology (Nestel et al 
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2006). Through biofortification, crops will be loaded with high levels of minerals and 

vitamins in their seeds and roots, which will provide multiple benefits. Staple crops are the 

predominant food source for many low-income families in developing countries. The strategy 

of biofortification of regularly consumed staples crops targets every family member in 

micronutrient-deficient populations (Nestel et al 2006). Biofortification is a cost-effective 

and sustainable process. Once the biofortified crops are developed, they will be able to be 

grown and to produce more seeds and roots. The seeds or roots can be shared internationally 

to improve the nutritional status of people all over the world, even if the formal investment in 

biofortification research ends. Current biofortification research efforts include developing 

genotypes of cassava with higher provitamin A carotenoid contents in the starchy roots. 

Subsequently, the germplasm of those varieties will be shared within the developing world 

(HarvestPlus 2006). 

Cassava (Manihot esculanta) serves as a major energy source for about 500 million 

people in tropical and subtropical regions, because it grows well under marginal conditions 

of soil and climate, survives diseases and pest attack and yields more energy per hectare 

compared with other crops (Montagnac et al 2009). The provitamin A carotenoids found in 

cassava are primarily β-carotene. However, in white cassava, there may be trace amounts of 

β-carotene, which may be present in concentrations as low as 1 mg/g fresh weight or 3 mg/g 

dry weight (Iglesias et al 1997, Chavez et al 2005). 

The bioavailability of β-carotene from different plant sources varies considerably and 

is unpredictable (Reboul et al 2006). Therefore it is essential to experimentally determine the 

vitamin A equivalence of the β-carotene in biofortified cassava. We introduced a highly 

sensitive HPLC detection technique, coulometric array electrochemical detection (ECD), to 
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quantify the minute vitamin A concentrations in the postprandial plasma triacylglycerol-rich 

lipoprotein fractions after subjects ingested a single realistic test meal (White et al, 2008). 

The objective of the current study is to quantify the vitamin A equivalence of the β-carotene 

in biofortified cassava based on the ingestion of a single realistic serving of cassava porridge.  

Materials and methods 

Subjects 

Nine healthy, non-pregnant women ages 19 – 39 years were enrolled in the study. The 

subjects were screened by a standardized interview regarding diet, health history, lifestyle 

factors, and anthropometrics (height and weight). The exclusion criteria included smoking in 

the past 12 months, vegetarian diet, eating disorders, intestinal disorders, lactose intolerance, 

psychological aversion to phlebotomy, recent vitamin or mineral supplement use, use of 

medications which can affect lipid absorption or transportation, use of hormonal 

contraceptives over the past 12 months, history of anemia, low iron status or hemoglobin, 

excessive bleeding, chronic disease, lipid malabsorption, high plasma triacylglycerol or 

cholesterol concentrations,  irregular menstrual cycle, body mass index (BMI ≥ 30), recent 

significant change in weight, and frequent consumption of alcoholic beverages (>1 

drink/day). Informed consent was obtained from all subjects before the interview. After the 

interview, those subjects who appeared to qualify were invited to complete blood screening, 

which included plasma lipid, lipoprotein, and biochemistry profiles and a complete blood 

count. Study procedures were approved by The Human Subjects Research Review 

Committee of Iowa State University.   

Test Meal 
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The β-carotene-biofortified cassava (yellow cassava) and the white cassava were 

grown under the same conditions at the International Center for Tropical Agriculture (CIAT), 

Cali, Colombia.  Immediately after harvest, the roots were waxed and shipped to Iowa State 

University. The waxed roots were peeled, and the starchy endosperm was sliced. The slices 

were dried for 18 hours at 40°C in an oven (Model No. 1675, Sheldon Manufacturing, Inc., 

Cornelius, OR), milled (Grindomix GM200, Retsch GmbH Germany) into fine flour, and 

stored in the dark at -80°C until use. 

A wetting method was used for to remove the cyanogens in the cassava flour 

(Cumbana et al 2007). Cassava flour (40 g) was mixed with water (50 g) to form wet dough, 

which was spread into a thin layer in an aluminum tray. The wet dough was heated at 30°C 

(Isotemp Oven, Fisher Scientific, Chicago, IL) for 5 hours. The dough was then held at 4°C 

for 12 hours overnight prior to use. The cyanogen content of the dough was determined by 

kit B2 (Bradbury et al 1999), which was purchased from Dr. J. Howard Bradbury, Australian 

National University, Canberra, Australia.  

Cassava porridge was prepared according to a traditional African processing method 

(Lancaster 1982). The cassava dough was mixed with 30 g of cool water, and added to 90 g 

of boiling water in a Teflon-coated pan on the burner of a stove. After stirring for 

approximately 1 minute, the porridge was transferred to a serving bowl. Sugar (14 g) was 

added to each serving of test porridge. Prior to ingestion, 8 g of high oleic acid sunflower oil 

(Spectrum Organic Inc, Haines Celestial Group, Inc., Melville, NY) was added to the test 

porridges. In the case of the white cassava porridge with β-carotene reference dose, the 

sunflower oil contained 537.6 µg β-carotene.  In the case of the white cassava porridge with 
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vitamin A reference dose, the sunflower oil contained 285.6 µg retinol in the form of retinyl 

palmitate. The cassava porridges were then immediately ingested by the subjects. 

The commercial formulations used to prepare the vitamin A and β-carotene reference 

doses were donated by DSM Nutritional Products, Ltd (Basel, Switzerland). The starting 

concentrations of vitamin A and β-carotene were 1.7 MIU/g (510,000 µg RAE/g) in the form 

of retinyl palmitate and 30% (300,000 µg/g), respectively. These commercial formulations 

were diluted with the high oleic acid sunflower oil. The final concentration of and the β-

carotene reference dose in sunflower oil was 67.2 µg/g. The final concentration of the 

vitamin A reference dose in sunflower oil was 35.7µg/g. The final concentrations were 

confirmed by HPLC with UV/VIS detection. 

Experimental design 

The subjects were assigned to one of the three test porridges in random order during 

each of the three one-week study periods. Each study period was separated by a washout 

period of at least one week.  

During each of the three study periods, the subjects were instructed to follow the 

following protocol. Days 1-3: avoid provitamin A carotenoid- and vitamin A-rich foods (a 

list of foods to avoid was provided); Days 4-6: consume a standardized, weighed, low- 

vitamin A diet consisting of conventional foods at the Iowa State University Nutrition and 

Wellness Research Center (NWRC). Breakfast and dinner were consumed under supervision. 

A lunch and snack was carried out. The meals were low-carotenoid and low-vitamin A to 

reduce variability among subjects and to induce intestinal vitamin A depletion. Day 7: 

Subjects returned to the NWRC in the morning after an overnight fast. A 40 mL baseline 

blood sample was collected from a forearm. The subjects then ingested one of the three test 
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porridges followed by 240 mL of bottled water. Additional blood samples were collected at 

at 2, 3.5, 5, 6.5, and 9 hours after ingestion of the test porridge. A vitamin A free snack 

(5 Nabisco® Nilla Wafers) was provided after the 3.5 hour blood draw. After the 5 hour 

blood draw, a small low-fat lunch was provided, which consisted of 48 g Rotella® (Omaha, 

NE) Italian Sandwich Bread (1.62 g fat) and 96 g Oscar Mayer® (Rye Brook, NY) Natural 

Turkey Breast (1g fat). The subjects were not permitted to drink water again until after the 

3.5 h blood draw.  

Subjects remained on the premises of the Nutrition and Wellness Research Center. 

Dinner was provided after the last blood draw. Subjects could then resume their normal diet 

and activities until the next study period. 

Sample collection and treatment 

Blood samples were collected via butterfly needle blood collection sets (BD 

Vacutainer Brand, REF# 367283, Franklin Lakes, NJ) into 10 mL plastic vacutainer tubes 

sprayed with anticoagulant K2EDTA (BD Vacutainer Brand, Catalog # 366643, Franklin 

Lakes, NJ). Blood samples were held on ice and then centrifuged at 700 × g for 20 minutes to 

separate plasma. 

Plasma (4 mL) was transferred to a 14 × 95 mm Ultra-Clear centrifuge tube (Catalog# 

344060, Beckman Instruments, Inc, Spinco Division, Palo Alto, CA). Plasma chylomicron 

and large VLDL (VLDLA) fractions were isolated by cumulative rate ultracentrifugation 

(Redgrave et al 1979, Lindgren et al 1975). For each milliliter of plasma, 0.14 g potassium 

bromide (Fisher Scientific, Chicago, IL, catalog # P205-500) was added to adjust the density 

to 1.10 g/mL. To prevent carotenoid and retinoid degradation, all procedures were performed 

under yellow light.  Three density solutions were prepared for chylomicron and VLDLA 
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isolation (Redgrave et al 1979, Lindgren et al ,1975), including 1.006 g/mL sodium chloride 

(Fisher Scientific, Chicago, IL, Catalog # S271-500) stock solution at pH 7. In addition, 

1.020 g/mL and 1.065 g/mL potassium bromide solutions were prepared from the 1.006 g/L 

stock solution. The densities were confirmed using a digital density meter (DMA 48, Anton-

Paar USA, DMA-48, Ashland, VA). After the density-adjusted plasma was transferred to an 

Ultra-Clear centrifuge tube, the density solutions described above were added into the tube 

carefully in the following order. First, 3 mL of 1.065 g/mL density solution was added, and 

then overlaid with 3 mL of 1.020 g/mL density solution. Finally, 2 mL of 1.006 g/mL density 

solution was added as the upper layer. The fill lines were marked after adding the second and 

third solutions. The samples were then centrifuged in a swinging bucket rotor (SW 40Ti, 

Beckman Instruments, Inc) in an ultracentrifuge (Model L8-70M, Beckman Instruments, Inc). 

The chylomicron fraction was isolated as the top fraction in the 1.006 g/mL solution, as 

delineated by the two fill lines, after centrifugation at 28,300 rpm (101136 g) for 43 minutes 

at 20°C. This fraction was removed and stored at -70°C until analysis. The tube was refilled 

with another 2 mL of 1.006 g/mL density solution. The VLDLA fraction was then isolated by 

centrifugation at 40,000 rpm (142948 g) for 67 minutes at 20°C. This fraction was then 

removed from the top of the centrifuge tube and stored at -70°C until analyzed. 

Analysis of retinyl palmitate and β-carotene in the chylomicron and VLDLA fractions 

The quantities of the absorbed β-carotene and its major vitamin A metabolite, retinyl 

palmitate, were analyzed by HPLC with coulometric array electrochemical detection (HPLC-

ECD). The volumes of the chylomicron and the VLDLA fractions at each time point were 

each approximately 2 mL. An equal volume of methanol was added to the entire fraction at 

each time point for deproteination, followed by three extractions with 4 mL of hexane (0.01% 
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BHT) to extract carotenoids and retinoids. The collected hexane layers were combined and 

dried using a speed vacuum evaporator (Model SPD 131 DDA, Thermo Electron Corporation, 

Milford, MA) with a universal vacuum system (UVS 800 DDA, Thermo Electron 

Corporation, Milford, MA).  The sample was reconstituted in 30 µL methanol and 30 µL 

MTBE and 25 µL was analyzed by HPLC-ECD. The HPLC-ECD system included a C30 

analytical Carotenoid Column (4.6 × 250 mm, Waters, Milford, MA), two solvent delivery 

systems (Model 582, ESA, Chelmsford, MA), an autosampler (Model 542, ESA) , a 

Coularray® Electrochemical detector with eight channels, a thermal organizer and an ESA 

Model 5600 Coularray® Electrochemical Detector. Data collection and integration were 

performed by ESA Coularray® software (Coularry Win 2.0). The mobile phases consisted of 

methanol (EMD Chemicals Inc. Gibbstown, NJ, catalog #: MX0488-1), methyl-tert-butyl 

ether (MTBE, Sigma, St. Louis, MO, catalog #: 650560), and aqueous ammonium acetate 

buffer (1M, pH 4.6) (Sigma, St. Louis MO, catalog # 17836). The gradient consisted of 

mobile phase A with methanol:MTBE:buffer (95:3:2 by volume) and mobile phase B with 

methanol:MTBE:buffer (25:73:2 by volume). The gradient started with a 1-minute hold at 

100% mobile phase A. Over the next 40 minutes, the gradient linearly changed to 25% 

mobile phase A and 75% mobile phase B with a stable total flow rate of 1 mL/min. The 

autosampler held samples at 4 °C and injected the samples by the microliter pick up method 

with mobile phase A as the transport solvent. The potentials in the eight channels in the 

detector were set at 100 mV, 300 mV, 400 mV, 450 mV, 550 mV, 600 mV, 750 mV and 800 

mV, respectively. The dominant channel for analysis of β-carotene was 400mV and the 

dominant channel for analysis of  retinyl palmitate was 750 mV. The thermal organizer was 
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used to heat the analytical column to 33°C. Retinyl palmitate (Sigma Chemical) and β-

carotene external standard curves were used for quantification. 

HPLC-UV/VIS analysis of the carotenoids in the test porridges 

To analyze the carotenoid contents in the cassava flours, wet doughs and test 

porridges, a 1.0 g sample was weighed into a 50 mL screw capped glass tube.  Then 6 mL 

methanol containing 0.01% butylated hydroxytoluene (BHT) was added, as well as an 

internal standard, β-apo-8'-carotenal (Fluka Chemical Inc). After vortexing for 90 seconds, 

samples were centrifuged for 5 min at 700 × g. The upper organic phase was collected into a 

25 mL volumetric flask. The sample was extracted again with 6 mL methanol (0.01% BHT) 

and 6 mL tetrahydrofuran (THF, VWR, Boston, MA containing 0.01% BHT). After 

vortexing for 90 seconds and centrifuging for 5 min at 700 × g, the upper organic phase was 

collected and combined into the same 25 mL volumetric flask. The sample was then 

extracted a third time with 6 mL of THF. Additional THF (0.01% BHT) was added to bring 

the volume to 25 ml in the volumetric flask. A 1 mL aliquot of the extract was dried in a 

speed vacuum evaporator (Model SPD 131 DDA, Thermo Electron Corporation, Milford, 

MA) with a universal vacuum system (UVS 800 DDA, Thermo Electron Corporation, 

Milford, MA), and reconstituted with 300 µL methanol and 100 µL MTBE. A 100 µL aliquot 

was injected into the HPLC-UV/VIS system. All samples were extracted and analyzed in 

duplicate. 

Carotenoids were separated with a 5-µm analytical Carotenoid Column (4.6 × 250 

mm, Waters Corporation, Milford, MA) and detected by a 2966 Photodiode Array Detector 

(Waters Corporation). The temperature of the 717 Plus Autosampler was set as 5°C. Two 

mobile phases were pumped separately by two 515 HPLC pumps. Mobile phase A consisted 
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of  methanol (HPLC grade, Fisher Scientific, Chicago, IL) containing 0.1% ammonium 

acetate (Fisher Scientific). Mobile phase B contained 100% MTBE (HPLC grade, Fisher 

Scientific). Mobile phases were filtered with a 0.2 µm, 47 mm nylon membrane filter 

(Whatman International Ltd, Maidstone, England) prior to use. The gradient started with 100% 

mobile phase A at a flow rate of 1.0 mL/min, and linearly increased to 100% MTBE over 70 

minutes. The β-carotene peak was integrated at 453 nm, a commercial β-carotene standard 

(Carotenature, Lupsingen, Switzerland) was used to generate the internal standard curve for 

calibration. 

The moisture contents of the porridges were analyzed by Association of Official 

Analytical Chemists (AOAC) Method 925.10 for solids (total) and loss on drying (moisture) 

in flour (AOAC, 1925). 

HPLC-UV/VIS analysis of the β-carotene and vitamin A reference doses 

The concentrations of β-carotene and vitamin A in the corresponding reference doses 

were confirmed by HPLC-UV/VIS analysis. A 0.1 g aliquot of the freshly prepared reference 

dose was weighed into a 50 mL screw capped glass test tube and votexed with 6 mL 

methanol (0.01% BHT) and 6 mL tetrahydrofuran (0.01% BHT). An 0.5 ml aliquot was then 

transferred into a 15 ml screw capped glass test tube. Then 1 mL of freshly prepared 40% 

potassium hydroxide in methanol with 0.1 M pyrogallol was added and the tube was 

vortexed for 2 min. The saponification step was followed by a washing step in which 2 mL 

HPLC grade water were added and vortexed for 30 s. The internal standard (150 ng) in 

methanol was added to the tube, as well as 4 mL hexane:methylene chloride (5:1 by volume). 

The tube was vortexed again before a 5 min centrifugation at 700 × g. The organic phase was 

collected and washed again with 1 mL water.  The organic phase was collected again after 
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another 5 min centrifugation step. The β-carotene reference dose was analyzed using the 

same mobile phase gradient previously described for analysis of the test porridge with an 

internal standard β-apo-8'-carotenal. Retinol was eluted isocratically using 90% acetonitrile 

and 10% water as mobile phase with retinal added as an internal standard. 

Data analysis 

The postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl palmitate 

contents at each time point were calculated from the area counts of the retinyl palmitate 

peaks on the dominant channel (750 mV) after HPLC-ECD analysis. An external standard 

curve, as well as the area of each peak, were used to calculate the amount of retinyl palmitate 

in the chylomicron and the VLDLA fractions.  The contents of retinyl palmitate in the 

chylomicron and VLDLA fractions were summed at each time point.  The total postprandial 

plasma triacylglycerol-rich lipoprotein (TRL) retinyl palmitate content in the entire plasma 

pool was calculated by multiplying the summed retinyl palmitate content in the chylomicron 

and VLDLA fractions from one liter of plasma (nmol/L plasma) with the calculated plasma 

volume for each subject (0.0427L*kg body weight) (Boer, 1984; Tang et al., 2005). 

The absorption curves were plotted with the baseline-adjusted total plasma TRL 

content of retinyl palmitate (nmol) at each time point. The area under the curve (AUC) vaules 

(nmol·h) were calculated by the trapezoidal method using the absorption curve with TRL 

content of retinyl palmitate (nmol) as y axis and the time (hour) as the x axis. The AUC was 

calculated using SAS 9.1.3 (Cary, NC). 

With the AUC results, we applied the calculations described by Tang et al. (2005): 

Vitamin A (nmol) formed from the biofortified cassava = 
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Retinyl palmitate AUC after ingestion of biofortified cassava 

Retinyl palmitate AUC after ingestion of white cassava with vitamin A reference dose
  

×vitamin A reference dose (nmol) �1�     

Vitamin A equivalence of provitamin A carotenoids in biofortified cassava to retinol (by wt) 

= 

β-Carotene equivalents in biofortified cassava porridge (nmol)  × 536.8

Vitamin A formed from after ingestion of biofortified cassava (nmol) × 286.5
 (2) 

 

where β-carotene equivalents = trans β-carotene + (9-cis + 13-cis β-carotenes)/2 (536.8 and 

286.5 are the molecular weights of β-carotene and retinol, respectively.) 

Equations (1) and (2) may be condensed into the following equation: 

Vitamin A equivalence value of biofortified cassava = 

Retinyl palmitate AUC after ingestion of white cassava with vitamin A reference dose

Retinyl palmitate AUC after ingestion of biofortified cassava
 

×
β-Carotene equivalents in biofortified cassava porridge (ng) 

Vitamin A in white cassava porridge with vitamin A reference �ng�  
 (3) 

 However, we need to correct for the trace amount of β-carotene in the white cassava 

flour in the white cassava porridge with the vitamin A reference dose. We assume that the 

vitamin A equivalence of the β-carotene in white cassava is the same as the vitamin A 

equivalence of the β-carotene in the biofortified cassava. It follows that the postprandial 

plasma vitamin A from the white cassava itself after ingestion of the white cassava porridge 

with vitamin A reference dose equals the β-carotene equivalents in the white cassava/the 

vitamin A equivalence of the biofortified cassava. The vitamin A in the white cassava 

porridge with vitamin A reference dose equals the vitamin A reference dose + (β-carotene 
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equivalents of white cassava/vitamin A equivalence of biofortified cassava). As a result, the 

corrected equation to calculate the vitamin A equivalence of the biofortified cassava is: 

Vitamin A equivalence of biofortified cassava = 

Retinyl palmitate AUC after ingestion of white cassava with vitamin A reference dose

Retinyl palmitate AUC after ingestion of biofortified cassava 
 

×
β-Carotene equivalents in biofortified cassava porridge (ng) 

Vitamin A reference dose + 
β-carotene equivalents of white cassava

vitamin A equivalence of biofortified cassava (ng)

  (4) 

  

 
The solution of this equation is: 

 
Vitamin A equivalence of biofortified cassava = 

( 

Retinyl palmitate AUC after 
ingestion of white cassava with 

vitamin A reference dose 
× 

β-Carotene 
equivalents 

in 
biofortified 

cassava 
porridge 

(ng) 

- 
β-Carotene 
equivalents 

of white 
cassava 

) (5) 
Retinyl palmitate AUC after 

ingestion of biofortified cassava  

Vitamin A reference dose (ng) 
 
 

 
Meanwhile, we also need to take into consideration the AUC formed by the β-

carotene in the white cassava itself when calculating the vitamin A equivalence of the β-

carotene in the white cassava porridge with β-carotene reference. As mentioned above, the 

vitamin A equivalence of β-carotene in white cassava is assumed to be the same as that of 

biofortified cassava. Therefore, from equation (4), the area under curve (AUC) formed from 

β-carotene in white cassava is: 

Retinyl palmitate AUC formed by carotenoids in white cassava porridge = 
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Retinyl palmitate AUC after ingestion of white cassava with vitamin A reference dose

Vitamin A equivalence of biofortified cassava
 

×
β-Carotene equivalents of carotenoids from white cassava porridge (ng) 

vitamin A reference dose + 
β-carotene equivalents of white cassava

vitamin A equivalence of biofortified cassava (ng)

 (6) 

 

Therefore, the actual AUC value formed from the β-carotene reference dose after 

ingesting white cassava with the β-carotene reference dose is: 

Retinyl palmitate AUC after ingestion of white cassava porridge with β-carotene 

reference dose − retinyl palmitate AUC formed from the β-carotene in the white cassava 

porridge               (7)                                                                        

Therefore: 

RAE of β-carotene in white cassava porridge with β-carotene reference dose= 

Retinyl palmitate AUC after ingestion of white 

cassava with vitamin A reference dose
Retinyl palmitate AUC formed from β-carotene 

reference dose after ingestion of white cassava 

with  β-carotene reference dose

 

×
β-Carotene reference dose (ng) 

Vitamin A reference dose + 
β-Carotene equivalents in white cassava

vitamin A equivalence of biofortified cassava (ng)

 (8) 

Results 

Reference dose concentration analysis and calculation 

The retinyl palmitate and β-carotene reference doses were prepared by diluting the 

commercial formulations with sunflower oil. The final concentrations were confirmed by 

HPLC, and compared with the expected concentrations based upon the manufacturer’s data 
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and the extent of dilution (Table 1). The retinyl palmitate and β-carotene concentrations in 

the reference dose were consistent across three independently prepared samples, and agreed 

with the expected concentrations. Therefore, the mean concentration of each reference dose 

was used in the calculations of the vitamin A equivalence values for the biofortified maize 

and for the β-carotene reference dose. 

Efficiency of cyanogen removal in cassava 

The wetting/spreading method effectively reduced the cyanogen content in the 

cassava flour as shown in Table 4. To test the efficiency of this method, we started with four 

kinds of cassava flours with different levels of cyanogen. The cyanogen removal rates were 

approximately 93% from cassava dough to porridge. Moreover, we showed that, after the 

cassava dough was spread on a tray and heated for 5 hours at 30 °C, the cyanogen contents in 

the four samples were lowered by at least 87%. The cyanide contents in test porridges were 

analyzed as well. As shown in Table 5, average cyanide content in yellow cassava and white 

cassava porridges were 0.99 ± 0.14 mg HCN/kg porridge, and 3.30 ± 1.19 mg HCN/kg 

porridge, respectively. Therefore cyanide contents in the test porridges were low enough to 

be considered as safe.  

Carotenoid and moisture contents in cassava 

There were several isomers of β-carotene in the cassava flours, including all-trans-β-

carotene, 13-cis-β-carotene and 9-cis-β-carotene (Figure 1). In the test porridge prepared with 

β-carotene-biofortified cassava flour, the amounts per 200 g serving of trans-, 13-cis, and 9-

cis β-carotenes were 970.71 ± 70.12 µg, 118.65 ± 0.69 µg, and 134.93 ± 0.49 µg, respectively.  

In the porridge prepared with white cassava flour, there were trace amounts of β-carotenes.  
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The amounts per 200 g serving of trans-, 13-cis, and 9-cis β-carotenes were 34.50 ± 1.00 µg, 

17.57 ± 0.26 µg and 17.28 ± 0.45 µg, respectively. The moisture contents of the white 

cassava porridge and the biofortified cassava porridges were not significantly different and 

were approximately 81% (Table 2). Trans-, 13-cis, and 9-cis β-carotene contents were not 

statistically significantly different in both yellow and white cassava porridges. The 

macronutrient compositions of the flours were determined by Covance® (Madison, WI), and 

results are shown in Table 3. 

Postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl palmitate responses 

The postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl palmitate 

responses were detected by HPLC-ECD. The chylomicron and large VLDL (VLDLA) 

fractions were analyzed. Figure 2 shows a representative chromatogram of an extract of a 

postprandial chylomicron sample. The predominant response for β-carotene was at 400 mV 

applied potential on channel 3, and the retention time was about 31 minutes. The 

predominant response for retinyl palmitate was at 750 mV applied potential on channel 7, 

and the retention time was approximately 24 minutes.  

Quality control (QC) materials were aliquots from a combined chylomicron and 

VLDLA pool isolated from extra plasmas collected during the study. We first determined the 

within-assay mean and precision of the HPLC-ECD analysis of the β-carotene and retinyl 

palmitate in the quality control material (Table 6). The within-assay coefficient of variation 

(CV) for retinyl palmitate and β-carotene weight in the QC material were less than 6%, 

which indicated excellent analytical precision. We also determined the inter-assay precision 

of the QC material (Table 7).  During each run, one quality control sample was extracted and 

analyzed by HPLC-ECD together with that day’s sample set. The inter-assay coefficient of 
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variation of the retinyl palmitate and β-carotene weight in the quality control samples were 

also less than 6%.  There was good agreement between the inter-assay QC retinyl palmitate 

values and the intra-assay mean value that was previously determined for retinyl palmitate in 

the QC material. 

The absorption curves were plotted using the baseline-adjusted TRL content of retinyl 

palmitate (nmol) in the entire plasma pool at each time point (Table 9-17, Figure 3-11). The 

time for peak absorptions varied somewhat among the individual subjects. Some subjects had 

a single absorption peak irrespective of the test porridge they ingested, and the plasma retinyl 

palmitate concentration returned to baseline gradually (Subject No. 3, No. 4). Some subjects 

had two absorption peaks (Subject No. 1, No. 2, No. 6, No. 9). However, for Subjects No. 5, 

No. 7 and No. 8, both patterns were observed in their absorption curves after ingestion one of 

the three test meals. 

The area under the curve (AUC) values were used to calculate the vitamin A (nmol) 

formed from the β-carotene and the vitamin A equivalence of the β-carotene in the 

biofortified cassava porridge. The vitamin A equivalence of the β-carotene in the white 

cassava porridge with β-carotene reference dose was also calculated (Table 8). As shown in 

Table 8, the average vitamin A equivalence after ingestion of white cassava porridge with β-

carotene reference dose was 2.11, which indicated that the average amount of supplemental 

β-carotene in oil to yield 1 µg of retinol was 2.11 µg. The average vitamin A equivalence 

value of the β-carotene in the biofortified (yellow) cassava porridge was 2.80, which 

indicated that, after ingesting each 2.80 µg β-carotene equivalents, 1 µg retinol will be 

formed in the body. A paired t test showed there was no significant difference in the mean 

vitamin A equivalence value of the β-carotene in the biofortified cassava porridge and the β-
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carotene in the white cassava with β-carotene reference dose.  Thus the bioefficacy of the β-

carotene in the biofortified cassava porridge was as good as that of the β-carotene reference 

dose added to the white cassava porridge.  

Discussion 

The bioavailability of β-carotene-biofortified cassava has been studied both in in vitro 

digestion model and in an animal model (Thakkar et al. 2009; Howe et al. 2009)  The in vitro 

digestion model used Caco2 cells to simulate small intestinal digestion of β-carotene, which 

provides a convenient and efficient approach to study the bioavailability of biofortified foods, 

including cassava. After simulated oral, gastric, and small intestinal digestion, it was 

discovered that the recovery of β-carotene from cooked cassava was over 70% (Thakkar et 

al., 2009). The percentage of β-carotene that was transferred into the micelle fractions during 

in vitro digestion was directly proportional to the β-carotene content but was unrelated to the 

genotype, isomeric structure, and total content of carotenoids. 

However, the efficiency of bioconversion of absorbed β-carotene into vitamin A is 

not included in the in vitro digestion model, which is important when studying the 

bioefficacy of the provitamin A carotenoids in cassava (Reboul et al 2006). Moreover, the 

metabolism of β-carotene in humans is complex, and many factors that affect the 

bioavailability and bioconversion of β-carotene are not considered in the in vitro digestion 

model, including other foods consumed with the cassava, the nutritional status of the subject, 

and the amount of carotenoids consumed (Castenmiller and West 1998).  By directly 

measuring liver vitamin A stores, which is considered the best indicator of vitamin A status 

(Goodman 1984), the gerbil model provided strong evidence that biofortified cassava was 
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able to adequately maintain vitamin A status as effectively as a β-carotene supplement 

(Howe et al 2009).  However, to further and more accurately investigate the bioavailability of 

provitamin A carotenoids in β-carotene-biofortified cassava, a bioefficacy study in humans 

was needed. Because it is not feasible to biopsy the liver to determine liver vitamin A 

concentrations in human subjects, we detected newly absorbed vitamin A in the plasma 

triacylglycerol-rich lipoprotein fractions. Subjects were fed a low carotenoid and low-vitamin 

A-diet for 3 days preceding ingestion of the test porridge.  The objective was to deplete the 

intestinal epithelium of vitamin A and induce a “pseudodeficiency” which would mimic true 

vitamin A deficiency. The changes of retinyl palmitate contents in the postprandial plasma 

were determined to study the efficiency with which β-carotene was converted into retinol in 

the body. 

As established by the US Institute of Medicine (2001), on average, the retinol activity 

equivalence (RAE) value of supplemental β-carotene in oil is 2, which means that, on 

average, 2 µg of supplemental β-carotene is needed to yield 1 µg of retinol in the body.  In 

our study, the average amount of supplemental β-carotene in oil needed to yield 1 µg of 

retinol was 2.11 µg, which was nearly identical to the number established by the US Institute 

of Medicine. This comparison validated our experimental approach. The average vitamin A 

equivalence value of the β-carotene in the β-carotene-biofortified (yellow) cassava porridge 

was determined to be 2.80.  Thus after ingesting the β-carotene-biofortified cassava porridge, 

for each 2.80 µg of β-carotene equivalents ingested, 1 µg retinol will be formed in the body.  

There was no statistically significant difference in the vitamin A equivalence of the β-

carotene in the yellow cassava porridge and the β-carotene in the white cassava porridge with 

β-carotene reference dose.  We conclude that the bioefficacy of the β-carotene in the yellow 
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cassava porridge was as good as that of the β-carotene in the white cassava porridge with β-

carotene reference dose.  Thus our finding is consistent with that of the gerbil study described 

above (Howe et al., 2009). 

Due to the trace amount of β-carotene content, which is as low as 1 mg/g fresh weigh 

or 3 mg/g dry weigh (Iglesias et al. 1997, Chavez et al. 2005), conventional white cassava 

has little value as a vitamin A source. Therefore tradition processing methods, including 

roasting, boiling, frying, sun-drying, grating, pounding, and soaking, do not consider 

preserving the β-carotene contents (Lancaster et al. 1982).  Boiling, oven-drying and sun-

drying each were reported to reduce the β-carotene contents to different extents, ranging from 

20 to 90 percent (Thakkar et al 2009).  In biofortified cassava, it is important to take into 

consideration the β-carotene retention, especially during the processing and cooking 

procedures. For example, a lower roasting temperature was reported to significantly increase 

β-carotene retention in cassava. The β-carotene retention increased from 10% to 63% after 

the roasting temperature was decreased from 195 °C to 165 °C and the roasting time was 

decreased from 20 minutes to 10 minutes (Thakkar et al 2009). In our study, it was shown 

that a low heating temperature (30°C) caused less than a 3% β-carotene loss although the 

heating time was as long as 5 hours (Table 1). When we boiled the cassava porridge for only 

1 minute, the β-carotene loss was not significant (less than 2%) (Table 1). In general, it will 

be important to adjust processing and cooking methods to enhance β-carotene retention in 

cassava.  Lower temperatures and shorter cooking times will enhance β-carotene retention.  

Cassava contains cyanogenic glucosides in the form of linamarin and lotaustralin, 

which give cassava a bitter flavor (Zvauya et al 2002). Inadequately processed cassava will 

cause cyanide poisoning and is linked to diseases like konzo (Casadei et al 1990). Therefore 
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cyanogen removal is important prior to consumption. Two steps are necessary for effective 

cyanogen removal, including crushing or grating the cassava into flour, and heating or drying 

(Essers et al 1996). The wetting/spreading method was shown to be easy and effective 

(Cumbana et al 2007). Our results showed that the wetting/spreading method effectively 

removed about 87% of the cyanogen content (Table 3).  

The newly absorbed vitamin A, in the form of retinyl esters, is mostly secreted in 

chylomicrons (Borel et al 1997). However, previous research showed vitamin A absorption is 

underestimated when assuming newly absorbed vitamin A was only present in chylomicrons. 

Retinyl esters were only detected in VLDLA during the postprandial period. It has not been 

definitely established where the retinyl esters in VLDLA come from (Krasinski et al 1990).  

The origin is believed to be intestinal VLDL. However, some other experiments showed that 

when the amount of triglycerides consumed in a meal varied, the distribution of retinyl esters 

in chylomicron and VLDLA varied accordingly in postprandial plasma. Thus it is more 

appropriate to measure retinyl esters in both lipoprotein fractions (Borel et al 1997).   

To calculate the total vitamin A formed after ingestion of a test meal by each subject, 

we used the changes in retinyl palmitate concentration to directly infer the changes in total 

retinyl esters concentration. The relative distribution of retinyl esters, including palmitate, 

stearate, linoleate and oleate, essentially remains constant in postprandial plasma. The 

postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl palmitate responses were 

shown to be directly proportional to the postprandial TRL total retinyl ester responses (Berr 

and Kern, 1984). 

The shape of the absorption curves of carotenoids varies among subjects and different 

treatment meals for one subject resulted in different absorption curves as well. As reported 
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before, matrix of food, molecular linkage, effectors of absorption and conversion, the 

nutritional status of the subject, and genetic factors all affected the bioavailability and 

bioconversion of β-carotene (Castenmiller and West 1998). The provitamin A carotenoids in 

β-carotene-biofortified cassava are in the cassava matrix. In general, the food matrix lowers 

the bioavailability of β-carotene at different levels, compared with the bioavailability of β-

carotene dissolved in oil (De Pee et al 1998). In this theory, the matrix determines if 

carotenoids from biofortified cassava porridge have different bioavailability with a vitamin A 

or β-carotene reference dose added to white cassava porridge. The efficiency of the enzyme 

β-carotene 15,15' monoxygenase (BCMO1), which converts β-carotene into retinal, is 

affected by its genetic polymorphism. People who carry both variant alleles were found to 

have reduced ability in converting β-carotene into retinol (Leung et al 2009). Moreover, 

factors from subjects themselves, such as nutritional status, also have a great impact on the 

absorption and conversion (Castenmiller and West 1998). When those factors, as well as the 

food matrix effect play a combined role on postprandial plasma total retinyl palmitate 

concentration, it is not hard to understand that why the shapes of absorption curves vary 

among subjects and test meals. 
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Table 1. Reference dose concentrations 

  Reference dose concentration (µg/g) 

 
    Analyzed by HPLC*    Calculated from label  

β-Carotene content in reference 
dose 

65.14 ± 0.64 67.20 

Vitamin A content in reference dose 36.52 ± 0.96 35.70 
* Values are the means of three independent analyses ± SE. 

. 
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Table 2. Carotenoid and moisture contents in the cassava porridges* 

  Total carotenoid content (µg) 
Moisture 
content 

Weight of 
porridge 
(g)   

Trans β-
carotene 

9-Cis-β-
carotene 

13-Cis-β-
carotene 

Yellow 
cassava 
porridge 

970.71 ± 
70.12 

118.65 ± 
0.69 

134.93 ± 
0.49 

81.85 ± 0.14% 
217.34 ± 
5.53 

White 
cassava 
porridge 

34.50 ± 1.00 17.57 ± 0.26 17.28 ± 0.45 81.57 ± 0.47% 
220.37 ± 
1.68 

* Values are the means of three replicates ± SE. 
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Table 3. Macronutrient composition of the porridges 

  White cassava porridge   Yellow cassava porridge 

 
1 2 3 Average   1 2 3 Average 

Calories 
(Cal/serving) 

142.8 143.2 142.8 142.93 ± 0.16 
 

149.2 148.8 146.8 148.27 ± 0.91 

Calories from fat 
(Cal/serving) 

2.16 2.16 2.16 2.16 
 

3.96 3.96 3.96 3.96 

Fat 0.118% 0.104% 0.087% 0.102% ± 0.01% 
 

0.21% 0.19% 0.18% 0.195% ± 0.008% 
Total carbohydrates 15.029% 15.084% 15.066% 15.06% ± 0.02% 

 
16.14% 16.10% 15.86% 16.04% ± 0.11% 

Soluble fiber 
(g/serving) 

<0.4 <0.4 <0.4 NA 
 

0.432 0.512 <0.4 NA 

Insoluble fiber 
(g/serving) 

1.824 2.02 1.868 1.90 ± 0.07 
 

2.608 2.612 2.756 2.66 ± 0.06 

Total dietary fiber 
(g/serving) 

1.824 2.02 1.868 1.90 ± 0.07 
 

3.04 3.124 2.756 2.97 ± 0.13 

Protein 0.91% 0.91% 0.91% 0.91%   0.57% 0.57% 0.57% 0.57% 
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Table 4. Efficiency of cyanogen removal in cassava by the wetting/spreading method 

Sample 
No. 

Cyanide content in samples (mg HCN/kg sample) % of 
Cyanogen 
removed 

after 30°C 
for 5 h 

Average 

% of 
Cyanogen 
removed 
in final 
porridge 

Average* 
Wet dough 

After 30°C for 
5h 

Porridge 

1 41.20 1.98 1.07 95.19% 
87.54% ± 

4.90% 

97.40% 
93.35% ± 

4.72% 
2 33.25 4.75 0.99 85.71% 97.02% 
3 15.25 2.79 2.19 81.70% 85.64% 

 

* Values are the means of four replicates ± SE. 

Table 5. Cyanide content in test porridges 

 

Porridge 
Cyanide content (mg HCN/kg 

porridge) 
Average* 

Yellow cassava 
1 1.19 

0.99 ± 0.14 2 0.99 
3 0.79 

    

White cassava 
1 3.96 

3.30 ± 1.19 2 4.55 
3 1.39 

* Values are the means of four replicates ± SE. 
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Table 6. Intra-assay precision of the BC and RP analysis in the quality control material3 

Sample RP peak area (nC) RP weight (ng) BC peak area (nC) BC weight (ng) 
1 2080 15.756 573 4.2624 
2 2220 16.764 547 4.1376 
3 2300 17.34 585 4.32 
4 2510 18.852 618 4.4784 
5 2260 17.052 566 4.2288 
6 2240 16.908 580 4.296 

Average   17.11   4.29 
CV   5.89%   2.64% 

 

                                                 

3 Quality control (QC) materials were aliquots from a combined chylomicron and VLDLA pool isolated from extra plasmas collected during the study. 
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Table 7. Inter-assay precision of the BC and RP analysis in the quality control material4 

Sample RP peak area (nC) RP weight (ng) BC peak area (nC) BC weight (ng) 
1 2320 17.484 674 4.7472 
2 2250 16.98 639 4.5792 
3 2560 19.212 676 4.7568 
4 2140 16.188 620 4.488 
5 2320 17.484 615 4.464 
6 2300 17.34 593 4.3584 
7 2370 17.844 638 4.5744 
8 2540 19.068 676 4.7568 
9 2020 15.324 573 4.2624 
10 2340 17.628 603 4.4064 
11 2310 17.412 588 4.3344 
12 2350 17.7 598 4.3824 
13 2280 17.196 682 4.7856 
14 2360 17.772 521 4.0128 
15 2330 17.556 543 4.1184 
16 2200 16.62 619 4.4832 
17 2370 17.844 635 4.56 
18 2450 18.42 614 4.4592 
19 2530 18.996 634 4.5552 
20 2280 17.196 662 4.6896 
21 2310 17.412 602 4.4016 
22 2220 16.764 531 4.0608 
23 2120 16.044 573 4.2624 
24 2280 17.196 539 4.0992 
25 2110 15.972 528 4.0464 
26 2250 16.98 549 4.1472 
27 2310 17.412 542 4.1136 

Average 
 

17.372 
 

4.40 
CV   5.23%   5.44% 

 

 

                                                 

4
 Quality control (QC) materials were aliquots from a combined chylomicron and VLDLA pool isolated from 

extra plasmas collected during the study. 
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Figure 1. Carotenoid profile of biofortified cassava porridge analyzed by HPLC 
UV/VIS 
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Figure 2. HPLC-ECD chromatogram of a chylomicron sample collected 5 hours after a 

subject ingested the ββββ-carotene-biofortified cassava porridge 
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Table 8. Vitamin A equivalence values of the test porridges  

Subject 
No. 

  Area under curve   
Vitamin A (nmol) formed after 

ingestion 
  Vitamin A equivalence 

  
Yellow 
Cassava 
ingestion 

White 
cassava w/ 

BC ingestion 

White 
cassava w/ 

VA 
ingestion 

  Yellow cassava 
White cassava w/ 

BC 
  

Yellow 
cassava  

White 
cassava w/ 

BC 

1 
 

170.53 171.28 301.84 
 

552.00 494.22 
 

6.62 3.49 
2 

 
204.17 106.06 70.52 

 
2828.94 1409.28 

 
1.15 1.22 

3 
 

247.21 191.51 164.40 
 

1469.11 1077.94 
 

2.37 1.60 
4 

 
238.62 175.73 182.31 

 
1278.82 881.55 

 
2.75 1.96 

5 
 

321.37 194.11 228.32 
 

1375.24 770.47 
 

2.55 2.24 
6 

 
158.89 107.75 166.64 

 
931.60 571.52 

 
3.85 3.02 

7 
 

133.72 108.51 72.41 
 

1804.37 1403.99 
 

1.90 1.23 
8 

 
229.52 76.69 85.50 

 
2622.91 816.16 

 
1.25 2.11 

9 
 

211.19 100.99 NA1 
 

1137.97 NA 
 

1.66 NA 

Mean 
± SE 

  
212.80 ± 

18.61 
136.96 ± 

15.12 
158.99 ± 

28.82 
  

1555.66 ± 
250.28 

928.14 ± 122.14   
2.80 ± 
0.632 

2.11 ± 0.292 

 

1 The data for the ingestion of the white cassava porridge with vitamin A reference dose for this subject were lost during analysis. 

2 Not significantly different by paired t test.  
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Figure 3. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 1 
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Figure 4. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 2 
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Figure 5. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 3 
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Figure 6. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 4 
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Figure 7. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 5 
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Figure 8. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 6 
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Figure 9. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 7 
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Figure 10. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 8 
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Figure 11. The appearance of retinyl palmitate in the combined chylomicron and large 

VLDL (VLDLA) fractions after ingestion of the test porridges by subject no. 9 
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CHAPTER 3. GENERAL CONCLUSIONS 

The development of β-carotene-biofortified cassava targets vitamin A-deficient 

populations in rural areas. Before the biofortified cassava is distributed to farmers, the 

bioefficacy of the β-carotene in the cassava needs to be investigated. 

We investigated the bioefficacy of the β-carotene in biofortified cassava in 9 healthy 

women ages 18-39 y. Three isomers of β-carotene were detected in the biofortified cassava 

porridge, including all-trans-β-carotene, 13-cis-β-carotene, and 9-cis-β-carotene. Before and 

after subjects ingested one of the three test porridges, including biofortified cassava porridge 

(1097.5 µg β-carotene), white cassava porridge with vitamin A reference dose (285.6 µg 

retinol) and white cassava porridge with β-carotene reference dose (537.6 µg β-carotene), 

blood samples were collected and chylomicron and large LDL (VLDLA) were separated 

from plasma. It was found that an average of 1587.53 ± 285.27 nmol·h of retinyl palmitate 

was formed in the subjects’ entire plasma pool after ingestion of a serving of biofortified 

cassava porridge containing 1097.5 µg β-carotene. The mean vitamin A equivalence of the β-

carotene was 2.80, which indicates that, after ingesting 2.80 µg β-carotene in the porridge, 1 

µg of retinol will be yielded in the body. The mean vitamin A equivalence of the white 

cassava porridge with the β-carotene reference dose was 2.11.  The vitamin A equivalence 

values of the β-carotene in yellow cassava porridge and white cassava porridge with the β-

carotene reference dose were not significantly different by paired t test. 

In conclusion, in our study population, the β-carotene in the biofortified cassava 

porridge had high bioefficacy, which was as good as that of a β-carotene supplement.  
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APPENDIX 

Table 9. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 
palmitate of subject No.1 

  Total retinyl palmitate (nmol) 

Time Yellow cassava  White cassava w/ BC  
White cassava 
w/ VA  

0 0 0 0 
2 21.37781632 33.74824828 59.75506393 

3.5 33.80931529 25.416963 46.02057833 
5 14.66044494 24.28286134 59.79980167 

6.5 29.90650668 16.34414971 15.35399172 
9 0.484174171 3.982441603 6.263730714 
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Table 10. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 

palmitate of subject No.2 

  Total retinyl palmitate (nmol) 

Time Yellow cassava  
White cassava w/ 

BC  
White cassava w/ 

VA  
0 0 0 0 
2 32.06160718 24.06319031 25.27891538 

3.5 34.37023814 20.59364778 6.677945918 
5 17.96576614 11.25358652 2.192605765 

6.5 34.70004257 10.42247938 7.126479933 
9 0.129942943 -3.736024504 -1.024966186 
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Table 11. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 

palmitate of subject No.3 

  Total retinyl palmitate (nmol) 

Time Yellow cassava  
White cassava w/ 

BC  
White cassava w/ 

VA  
0 0 0 0 
2 25.39648492 32.42910951 44.19464207 

3.5 48.66382661 56.98684104 32.78275698 
5 40.19564333 18.88001626 16.81418278 

6.5 35.27603209 10.04891083 8.225025451 
9 -0.862948201 0.689552067 -3.025560914 
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Table 12. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 
palmitate of subject No.4 

Total retinyl palmitate (nmol) 

Time Yellow cassava  White cassava w/ BC  
White cassava w/ 

VA  
0 0 0 0 
2 12.82101139 12.49732945 29.83184992 

3.5 43.38540464 26.92773151 45.3144688 
5 60.12066258 43.86341171 23.66886571 

6.5 26.0989855 21.86706968 12.24479741 
9 6.98371333 3.147631449 1.712608133 
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Table 13. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 
palmitate of subject No.5 

  Total retinyl palmitate (nmol) 

Time 
Yellow 

cassava  
White cassava w/ 

BC  
White cassava w/ 

VA  
0 0 0 0 
2 55.10738825 36.80578924 42.02799689 

3.5 46.9134128 28.61181379 35.18893077 
5 46.26821789 25.51487819 47.12503674 

6.5 32.59008565 21.66306453 14.22009597 
9 15.98276848 4.146022537 2.283990006 
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Table 14. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 
palmitate of subject No.6 

  Total retinyl palmitate (nmol) 

Time 
Yellow 

cassava  
White cassava w/ BC  

White cassava 
w/ VA  

0 0 0 0 
2 21.16042154 11.88860864 51.19228704 

3.5 28.65566462 4.485614704 32.62714649 
5 22.00603871 18.73042027 11.40984301 

6.5 22.62103301 25.53379475 19.4432061 
9 0.500456643 0.841773453 5.913331419 
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Table 15. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 

palmitate of subject No.7 

Total retinyl palmitate (nmol) 

Time 
Yellow 

cassava  
White cassava w/ 

BC  
White cassava w/ 

VA  
0 0 0 0 
2 15.8857799 11.53772879 6.70934076 

3.5 48.10262716 16.86155483 17.30529452 
5 7.224552925 25.859275 19.70761602 

6.5 12.49679065 11.27375161 3.311771782 
9 -1.651167045 1.351305844 -1.181856381 
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Table 16. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 
palmitate of subject No.8 

Total retinyl palmitate (nmol) 

Time Yellow cassava  White cassava w/ BC  
White cassava 
w/ VA  

0 0 0 0 
2 11.6909319 0.769862824 19.38488128 

3.5 33.81950456 26.11113395 12.90067237 
5 34.98085542 12.23821848 13.60232184 

6.5 46.5459743 5.458832894 6.135803661 
9 10.21504852 5.516900437 -0.362922141 
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Table 17. Total postprandial plasma triacylglycerol-rich lipoprotein (TRL) retinyl 

palmitate of subject No.9 

  Total retinyl palmitate (nmol) 
Time Yellow cassava  White cassava w/ BC  

0 0 0 
2 40.54329357 16.43849574 

3.5 34.54184245 22.73189169 
5 36.68722438 14.43770512 

6.5 16.35191607 6.572779077 
9 0.552945772 2.654867262 
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